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Abstract 

Abstract This paper describes the implementation of the ProTalk compiler for PrkAda. An 
important component of the ProKappa system is its multi-paradigm, mixed-rule/imperative 
language, ProTalk. ProTalk combines elements of backtracking AI languages such as Prolog with 
imperative constructs such as conditionals, iteration, assignment, and subprogram invocation. Our 
implementation illustrates the use of generators to achieve a Prolog-like semantics, and the 
possibility (and difficulties) of employing such mechanisms in Ada.  

Keywords: Knowledge-based systems compilation, knowledge-based systems development tools, 
Ada, ProKappa, object-oriented systems, application delivery environments 

1. Introduction 

A fundamental premise of programming language design is that language constructs 
should capture intent. In AI, often the intent is to express quantified statements of the 
form of “when this happens, this should follow.” Classical AI systems realize this 
paradigm with rule-based programming. (Rules are used frequently enough in AI that 
some confuse AI with rule-based programming.) However, rules alone are inadequate for 
the totality of systems building. Often, conventional imperatives such as sequencing, 
conditionals, iteration, assignment and subprogram invocation are the best expression of 
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design elements. This paper focuses on ProTalk, a language for ProKappa [1] that melds 
rule-based and imperative programming, and describes a compiler from ProTalk to Ada. 
The ProTalk-to-Ada compiler is a component of the PrkAda system, described in a 
companion paper [2]. 

Conceptually, pattern-action pairs are the basis for rule-based systems. When the 
pattern of a rule matches the situation, the rule’s action may be executed. Rule languages 
are ambivalent about whether the pattern-actions express truth (“when this is true, 
conclude the following”) or processes (“when this becomes true, do the following.”) 

Pattern-action languages have two important characteristics that distinguish them 
from conventional languages. The first is the need to describe patterns. This implies 
linguistic extension for pattern variables and pattern expressions, and a clear specification 
of the space of to-be-matched entities. The second centers on the issue of conflict 
resolution: what to do when several patterns match simultaneously [3]. The semantics of a 
particular pattern-action language may range from requiring this choice to be made non-
deterministically through specifying complex rules for ordering the rule selection. 
Whatever point is chosen on this continuum, this conflict resolution problem introduces 
considerable intellectual complexity to the programming process. 

Thus, rule languages are a double-edged sword. They allow “atomizing” knowledge 
(the independent declaration of separate facts), asserting universally quantified 
statements, and free the programmer from concern for control structures and sequencing. 
However, they present a non-deterministic semantics, introduce unanticipated interactions 
between elements of the atomized knowledge, require considerable effort in establishing 
context for each atomic knowledge element [4], and demand circumlocutions and idioms 
to obtain conventional control patterns such as loops and conditionals. Prominent 
examples of rule languages include Prolog [5] and OPS5 [6]. Almost every multi-
paradigm AI tool has some form of a rule language. 

Because rules have some of the semantics of if-then-else expressions, rules can be 
run (chained) either in a “forward” or “backward” direction. Forward chaining requires 
following all the consequences of an assertion. That is, if we have rules that state  

 if A then B, (1) 
and  
 if B then C, (2) 

then a forward chaining system will, on the assertion of A, conclude B (using rule 1), then 
conclude C (using rule 2). OPS5 [7] and ART [8] are examples of forward chaining 
systems.  

Backward chaining involves reasoning from a consequence to the conditions that 
cause that consequence. Thus, we could backward chain given the question “is C true?” to 
the question “is B true?” and then to the conclusion that A’s truth implies C’s truth. Prolog 
is an example of a backward chaining system. Some systems allow mixed chaining—it is 
possible to invoke forward chaining while back chaining, and vice versa. An example of 
this would be invoking back-chaining to satisfy one of the clauses in the condition of a 
forward-chaining rule. Of course, our “A, B, C” example simplifies the problem, as most 
rule systems allow variables for the patterns A, B, and C, and much of the search involves 
finding bindings for the pattern variables that satisfy the rules. 

Rule systems also differ on whether they are always active or explicitly invoked. In 
always-active systems, rule-checking is immediately triggered by any assertion that is 
relevant to a condition of any rule. Many of these systems (such as RETE [7]) maintain a 
complex database of partial rule satisfactions in order to avoid redundantly rechecking 
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rule conditions. Invoked systems delay checking rules until the rule system is explicitly 
called. These systems generally allow search and rule-firing to be limited to specified rule 
sets. 

There are four primary ways of implementing rule languages: interpreters, 
compilation to a network, compilation to an abstract machine, and compilation to 
generators. Interpretation (used, for example, in KEE [9]) requires an engine that 
successively examines the conditions of appropriate rules and explicitly executes a rule 
coherently. This requires little additional storage and allows selective invocations of 
subsets of all rules. However, it is not as directly efficient (in a raw-machine sense) as 
compilation mechanisms. The RETE mechanism compiles rules to a network, 
progressively advancing tokens through that network as it matches portions of rules. This 
is perhaps the most efficient way of implementing a collection of rules, but can have large 
space requirements, works directly only for forward-chaining, and does not explicitly 
limit the execution to rule subsets. Abstract machine compilation effectively treats rule 
languages as would a conventional compiler, determining a sequence of instructions that 
move data among registers. Abstract machines typically have primitives for pattern 
matching and storing the search context of the rule system. Compilation to the Warren 
Abstract Machine (WAM) is the standard strategy for implementing Prolog systems [10, 
11]. Both continuation-based and generator-based search for Prolog have been explored 
by Horsell and Lander [12]. We discuss compilation by generators in Section 3, below. 

ProTalk is a computer language that spans the continuum between conventional 
imperative languages and rule languages. That is, ProTalk lets the programmer use not 
only conventional programming constructs, but also pattern matching and rules. ProTalk 
in this respect traces its intellectual roots to Planner [13], which extended Lisp with 
pattern-matching and search constructs. Syntactically, ProTalk is marked by a (relatively) 
context-sensitive, “quasi-natural language” external form.  

In the next section, we provide an overview of ProTalk, touching on its syntax, 
semantics, and interaction with the object system. We continue by discussing the ProTalk 
to Ada compiler, including the nature of backtracking, the use of tasks as generators in the 
compiler, and the compilation of the more difficult ProTalk constructs. We then 
summarize our results. A supplemental paper ([14]) provides both a more complete 
description of the ProTalk language; and an example of the translation of ProTalk to Ada. 

2. ProTalk 

ProTalk relies on the following fundamental concepts: 

• Rules and functions. ProTalk subprograms are either functions (having parameters 
and returning values), or condition/action rules (both forward chaining and backward 
chaining). The bodies of both functions and rules employ the same basic language. The 
main difference is that functions are called directly, while rules use pattern-directed 
invocation. 

• Variables. Variables in ProTalk are neither declared nor typed. (To put it another way, 
all values are of a single type, called a PrkType.) Variables are initially unbound. Like 
Prolog, evaluating an expression containing unbound variables may lead to bindings for 
those variables. However, unlike Prolog, one cannot unify two unbound variables, and, 
also unlike Prolog, one can reassign a new value to an already bound variable. 

• Success and failure. Like Prolog, ProTalk incorporates a notion of success and failure. 
A ProTalk program is a series of statements. Statements include tests and simple 
unifications as well as assignments. Each statement either succeeds or fails. If a 
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statement succeeds, the system continues to the next statement. However, a statement 
may fail, for example, if a test evaluates to false, or if the system is unable to find an 
acceptable binding for a variable. Failure causes backtracking to the last choice point 
(where there were multiple ways of satisfying a condition, such as several possible 
bindings for a variable, or an explicit disjunction), and forces consideration of the next 
possibility. In the case of functions, only explicit choice points are allowed (created 
using the find operator). Rules have an implicit “find” before all statements. Thus, rules 
typically create many choice points. Unlike Prolog, in ProTalk one can also use 
conventional control constructs, (such as assignment, if/then/else, for/while, and 
iteration over lists and into accumulators) in functions and rules. In particular, the 
language provides a “return” from functions. 

• ProTalk and ProKappa. ProTalk provides certain primitive operations needed for 
integration with the rest of ProKappa, for example, operations for changing/inquiring 
about class/member links, and slot and facet values in the object system. 

2.1. A ProTalk Example 

To go from the amorphously vague to the excruciatingly concrete, we consider the 
following example of a ProTalk function, Cs1ResetForRules, drawn from a 
reimplementation of CS1Fixer [15]. Cs1ResetForRules resets the state of the object 
system to prepare for the next problem-solving episode. In the code, the symbol “==” 
denotes a unification, which may succeed or fail, while “=” denotes an ordinary 
assignment, which always succeeds. 

 
function Cs1ResetForRules (?self, ?slot)  

/* Cs1ResetForRules is a method, so it 
 * takes two arguments, ?self, the object 
 * receiving the message, and ?slot, the 
 * name of the message. 
 */ 

{ 
    H2Source.Pressure = Normal; 

/* Set the Pressure slot of the object named 
 * H2Source to the symbol Normal. 
 */ 

 
    for ?X in direct subclassof Subsystem; 

/* For each immediate child of the class 
 * Subsystem, bind ?X to that child and 
*/ 

    do 
    {  

/* Find each value of the SubsystemProblem 
 * slot of ?X, binding it to ?sp. 
*/ 

        for {find ?X.SubsystemProblem      == ?sp; } 
        do 
        { 

/* Remove the value ?sp from the 
 * SubsystemProblem of  ?X 
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 */ 
             ?X.SubsystemProblem           -== ?sp; 
        } 
    } 
 
    for ?Unit in instanceof Components; 

/* For each instance descendant of  
 * Components, do... 
 */ 

    do 
    { 

/* If the instance is not in a specific list 
 * of exceptions, then set its Value slot 
 * to Normal 
 */ 

       if Member (?Unit, ‘(E1@, E2@, E3@, E4@,  
                           E5@, E6@, I1@, W1@))  
            == FALSE; 
       then  
            ?Unit.Value = Normal; 
    } 
 
    for ?component =  

/* Finish by running the rules in the set of 
 * CoolingTestProcedureRules to find values 
 * of the FaultyComponent slot of the 
 * object Cs_1, printing out a message for. 
* each 
 */  

 
      find [ CoolingTestProcedureRules ] 
                      Cs_1.FaultyComponent; 
        do {Print(“\nA faulty component is “); 
            Print(?component); 
           } 
} 

This function is intended to be called with ?self and ?slot bound. Calling a function with 
unbound variables is also possible. Such a function would act as a generator—successive 
calls, within the context of a search, produce new bindings for the unbound variables. 
When all bindings have been exhausted, the function call itself fails. (ProTalk requires 
that all parameters to a function must be bound by the time the function exits.) 

The following is an example of a ProTalk rule—a backward chaining rule, to be 
precise. 

bcrule D1ReadsHighRule in AllLowAll_EsShortRules 
/* The rule class for this rule is 
 * AllLowAll_EsShortRules. (Rule classes 
 * can themselves be built into directed 
 * acyclic graphs, though (unlike KEE), 
 * rules do not correspond to objects in the 
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 * object system.) 
 */ 

{ 
  if: 

      ?comp.Value  == High; 
/* If some component, ?comp has High in 
 * its Value slot, and 
 */ 

      ?comp.Sensor == ?sen; 
/* The value of its Sensor slot is ?sen, and 
 */ 

      ?sen.Trend   == High;  
/* That object, ?sen has High in its Trend 
 * slot, then 
 */ 

  then: 
      ?comp.ComponentFailureType +== ReadsHigh; 

/* Add ReadsHigh to the   
 * ComponentFailure slot of ?comp 
 */ 

      ?comp.FaultState           = UncorrectedFault; 
/* Set its FaultState to UncorrectedFault 
*/ 

          RespondToHighSensor(?comp); 
/* And call the function  
 * RespondToHighSensor on ?comp. 
 */ 

} 

Since this is a backward chaining rule, it means, “If one is looking for an object with 
ReadHigh in its ComponentFailureType slot, or UncorrectedFault in its 
FaultState slot, then establish that the object has High in its Value slot, and its 
sensor slot contains another object that has High in its Trend slot.” If a rule succeeds, 
the rule itself is run, causing execution of the function RespondToHighSensor on the 
component. 

3. ProTalk to Ada Compiler Design 

The ProTalk compiler in the standard ProKappa system produces C output. Instead of 
developing a ProTalk/Ada compiler from scratch, we have modified the existing compiler 
so that it produces Ada code instead. This has several advantages. It works in much the 
same way, which is convenient for the user. From an implementation point of view, we 
saved considerable effort by reusing the existing parser mechanism. Only the code 
generation routines needed to be changed, and even there, much of the overall structure 
was preserved. This helps to maintain a close correspondence between ProTalk-C and 
ProTalk-Ada. 
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Because of important differences between C and Ada (primarily the lack of function 
pointers and dynamic long jumps in Ada1), the C-based approach for implementing 
ProTalk backtracking could not be directly implemented in Ada. It was necessary to 
develop a new code translation design. This is described in more detail in the following 
sections. 

Since ProTalk functions support backtracking, and use the same language as rules, 
the latter provide little additional functionality beyond a sophisticated triggering 
mechanism. We have not implemented an Ada translator for rules, and will consider only 
the translation of functions during the remainder of this paper. 

3.1. Backtracking in ProTalk 

At a conceptual level, ProTalk behaves very much like Prolog, including mechanisms 
similar to the “cut” feature. However, ProTalk includes many additional high-level 
constructs to facilitate structured programming, readability, and ease of use. 

A simplified ProTalk function has the form 

function F {find S1; ... ; find Sn;}  

A call to F may be viewed as a problem-solving episode. The function definition may be 
read as saying: “To solve F, find compatible solutions of subproblems S1, ..., Sn and put 
them together to give a solution of F.” The need for backtracking arises from the 
compatibility requirement. For example, it may turn out that a solution for S1 is later 
discovered to be incompatible with subsequent function calls. (That is, there are no 
combinations of the bindings for variables in S2, ..., Sn that succeed, given the choices 
made for variable bindings in S1.) In that case, it is necessary to re-enter S1 to find a new 
solution. This means that some record of the state of S1's computation must be preserved 
so that the possible solutions will be available in an orderly fashion. 

ProTalk provides mechanisms for controlling the amount of backtracking that occurs. 
If the “find” is omitted in front of a function call, then the call is deterministic. A 
deterministic call behaves more like a function call in a conventional language. It never 
fails when first entered. Moreover, if a deterministic call is re-entered during 
backtracking, a new solution is not found. Instead, the re-entry merely undoes any (local) 
effects of the call, and backtracking continues at the point preceding the call. (It should be 
noted that backtracking may occur within a deterministic call during the period it is first 
entered. It is only the re-entry backtracking and possible multiple solutions that are 
excluded by making the function deterministic.) 

ProTalk also has a find1 modifier. A call using find1 is like a deterministic call 
except that it may also fail during the first entry. (Readers familiar with Prolog will 
observe that the behavior of find1 resembles “cut.”) Thus, find1 requests at most one 
solution to a problem. There is, in addition, a more general findn modifier to specify a 
specific upper bound on the number of solutions to be computed. 

 
1  Ada, as used in this paper, refers to Ada 83. Ada 95 [16] has pointers to functions, allowing a more direct 

reimplementation of the original ProTalk compiler. This leaves open the question whether the Ada exception 
mechanism could be used to imitate the dynamic long jumps of C. 
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3.2. The ProTalk to C compiler 

We give a brief description of the ProTalk-C approach so that the reader may better 
understand the changes required by the ProTalk-Ada design. The C compiler behaves as 
follows. Each ProTalk function F is implemented by several C functions, designated F1, 
F2, etc. We may think of these as computing the successive statements within F. 
However, the C functions do not simply find a solution to F and return. Instead, any 
pending ProTalk statements following a call to F are passed down to F1 in an additional 
argument called the continuation. (This is more properly called a success continuation, 
since it describes what to do in the event of success in finding a solution. We consider 
failure continuations below.) The second and subsequent statements within F also get 
pushed onto the continuation after F1 is called. As each statement in F succeeds and 
before the associated C function returns, the evaluator is called recursively on the next 
item in the continuation. Thus, successful subcalls do not return, but instead continue the 
computation below them until the continuation is finally exhausted. 

More concretely, suppose F is defined in ProTalk as 

function F {find G; find H;} 

Then the C functions F1, etc., are essentially defined as 

function F1(cont) { push(F2, cont); G(newcont); } 
function F2(cont) { push(F3, cont); H(newcont); } 

function F3(cont) { Next = pop(cont); Next(newcont);} 

Of course, G and H would also generally be implemented by several C-functions, so the 
subcalls would actually be to G1 and H1. If the statements in G all succeed, then F2 will 
be popped from the continuation and called, before G1 returns. This in turn may 
eventually lead to F3 being popped and called, and so on, all before G1 returns. 

If the evaluation under G1 ultimately fails, then G1 does return, and control reverts to 
F1. If the definition of F had involved, say, a disjunction in the first statement, the F1 
code would then work on an alternative solution for F. (Thus, the failure continuations are 
embedded in the C-code, rather than being passed as arguments.) When there are no more 
alternatives, we reach the end of the code for F1, and it returns, allowing its callers to try 
out their alternatives. Thus, we see that backtracking is implemented by means of simple 
C function returns. 

If final success occurs, (i.e., if the success continuation list becomes empty), the C 
stack needs to be cleared. This is accomplished by a long jump back to the top-level 
evaluator call. Similarly, local successes of deterministic function calls require long jumps 
back to the point (on the C stack) where the deterministic call was entered. 

The major difficulty in adapting this approach to Ada lies in the recursive evaluation 
of the continuation items. In C, function pointers can be treated as data and passed as 
arguments to other functions, where they can be subsequently evaluated. The continuation 
argument discussed above is represented as a data structure that includes function 
pointers. This is not allowed in Ada. Although it is possible to simulate the dynamic 
evaluation of “functional” data by means of case statements, this results in a loss of 
efficiency that would be particularly egregious for ProTalk because of the repeated need 
for such dynamic evaluation. 

There were two practical disadvantages to following the existing C approach: the 
volume of additional runtime support code it requires, and the opacity of its generated 
code. The existing approach relies on a large, complex runtime system to reduce the 
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complexity of the compiler. Following that approach would have required reimplementing 
that system in Ada. The existing approach generates extremely opaque code. For example, 
the ProTalk variables are not directly translated as C variables, but must be packed into 
arrays and referenced indirectly by array location. (To echo the first point, a considerable 
volume of variable management code is required for purposes such as deassignment of 
variables on backtracking.) Similarly, the manipulation of continuations obscures the real 
work being done by the code. 

3.3. Using Ada tasks for continuations 

Fortunately, a more elegant design is available in Ada (which is, after all, a higher level 
language than C). C does not allow for saving a subprogram state between calls. Ada 
provides tasks with this capability. 

In our approach, each ProTalk function becomes a task in Ada. The points where the 
function is first entered, and re-entered during backtracking correspond to Ada task 
entries. (The state of an Ada task survives between entry calls.) The Ada task terminates 
when either backtracking exhausts all the solutions for the function, or final success 
occurs for the top-level call or an intermediate deterministic call. 

The F example translates into an Ada task essentially as follows. 

task body F_task is 
begin  
    accept start; 
 
    loop 
        Call(G_task); exit when Fails; 
        loop 
            Call(H_task); exit when Fails; 
            Success; 
            accept stop; 
            accept start; 
        end loop; 
    end loop; 
 
    Failure; 
    accept stop; 
end F_task; 

Note that there are two entries, start and stop. The procedures Success and Failure set 
global variables that communicate the status of the computation. The nested loops ensure 
that all possible solutions for G and H are tried if necessary. That is, they help implement 
the backtracking. The F task is called as follows. 

procedure Call(F_task) is  
begin  
    F_task.start; 
    F_task.stop; 
end Call; 

If the ProTalk functions have variables, these are carried over directly as arguments to the 
start/stop entries. Thus, there is a direct textual correspondence to the original ProTalk 
code. Moreover, there is no need for a success-continuation argument. 
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With this approach, the bulk of the work involved designing and implementing 
individualized translations for the specialized ProTalk statements such as assignments, if-
statements, or-statements, for-loops, and so on. The runtime support requirements are 
relatively trivial, with the major work being done by the compiler. 

3.4. ProTalk statement translations 

We now discuss the translations of the different statement types. Table 1. lists the 
statement types available in ProTalk. Translation of many of these statement types is 
straightforward, and differs little from the mechanism of the ProTalk-to-C compiler 
(except, of course, for the vagaries of target syntax). For example, an assignment 
statement in ProTalk maps to an assignment statement in Ada. We confine our discussion 
to those that are particularly relevant to the task-oriented design. The statement types of 
main interest fall into three groups: conditional branching statements (OR, IF, NOT); 
iterative looping statements (FOR, WHILE); and the RETURN statement. 

 
 

Table 1. ProTalk Statement Types  
 

succeed fail proccall cfn 
ccode return findn accum 
retry for while assign 

inarray inlist fromto tuple 
test and bound binrel 

findany or if not 
 
 

3.4.1. Conditional branching statements  

The reader is reminded that ProTalk’s backtracking produces a nonstandard semantics for 
statements. Most importantly, every statement is a conditional because its success or 
failure governs the applicability of subsequent statements. For example, the ProTalk 
statement 

NOT S; 
is equivalent to 

if S; then FAIL; else SUCCEED; 

If the first branch applies, backtracking begins immediately; otherwise the subsequent 
statements are evaluated. 

The most general cases of IF and OR are implemented as subtasks in ProTalk-Ada. 
The following examples illustrate the translations. (This is a simplification that glosses 
over possible structure introduced by the substatements within the OR.) 

The statement find OR {S1; S2; S3;} generates a subtask defined by:  

task body OR_task is begin  
    accept start; 
 
    for each solution of S1 loop 
        success;  
        accept stop;  
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        accept start; 
    end loop; 
 
    for each solution of S2 loop 
        success;  
        accept stop;  
        accept start; 
    end loop; 
 
    for each solution of S3 loop 
        success;  
        accept stop;  
        accept start; 
    end loop; 
 
    failure; 
    accept stop; 
end OR_task; 

The subtask is called within the main body of the code as follows:  

...  
loop  
    Call(OR_task);  
    exit when fails; 
    ... 
end loop; 

The behavior of the IF construct is somewhat complex with respect to backtracking. The 
conditional part of the IF is evaluated to see if it has a solution. During this evaluation, 
backtracking may occur within the conditional part. However, if the evaluation succeeds, 
and the computation has proceeded to the THEN part, no further solutions to the 
conditional part are sought. That is, if the THEN part subsequently fails, then the whole 
IF fails. More precisely, the following (generic) IF statement: 

IF C1; THEN S1; ELSE IF C2; THEN S2;  

is semantically equivalent to the following two ProTalk statements, which use an 
auxiliary variable BRANCH: 

find1 OR  
    { 
        {C1;   BRANCH == 1;}    /* This sets BRANCH */ 
        {true; BRANCH == 2;} 
    } 
find OR  
    { 
        {BRANCH == 1; S1;}      /* This tests BRANCH */ 
        {BRANCH == 2; S2;} 
    } 

However, instead of following this approach, the Ada translation of IF makes 
backtracking jump over the conditional part by raising an Ada exception. Thus, the 
statement 
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IF C1; THEN S1; ELSE S2; 

generates a subtask defined by: 

task body IF_task is begin  
    accept start; 
 
    declare 
        IF_exit : exception; 
    begin 
        for each solution of C1 loop 
            for each solution of S1 loop 
                success;  
                accept stop;  
                accept start; 
            end loop; 
            raise IF_exit; 
        end loop; 
 
        for each solution of S2 loop 
            success;  
            accept stop;  
            accept start; 
        end loop; 
    exception  
        when IF_exit => null; 
    end; 
 
    failure; 
    accept stop; 
end IF_task; 

3.4.2. Return statement 

A return statement indicates an early successful return from a function. If the return 
occurs as a top level statement, this is easily implemented: the compiler simply omits any 
subsequent statements and goes directly to the success exit of the task. 

The situation is more complicated when the return is nested within a conditional 
branching statement, because there may be additional statements after the conditional 
statement. The additional statements should only be executed if a branch without the 
return is chosen. 

This complication is handled by using distributivity to absorb any following 
statements inside each branch of the conditional statement. To facilitate this, a new 
subtask, called a continuation subtask, is formed to encapsulate all the subsequent 
statements, and calls to this subtask are placed at the end of each branch of the 
conditional. Thus, 

...  
find or {S1; S2;}  
continuation; 

becomes  

...  
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find or  
  { 
    {S1; continuation;} 
    {S2; continuation;} 
  } 

Now any branches that contain a return can handle it the same way as if it occurred at the 
top level: statements following the return (including the continuation) are simply deleted. 

3.4.3. Iterative statements 

The FOR and WHILE statements are generally handled similarly to ProTalk-C. We note 
that FOR S1; DO S2; is compiled equivalently to NOT {S1; S2; FAIL;}. The 
WHILE statement is like FOR but always reevaluates its conditional from the beginning. 
More precisely, WHILE S1; DO S2; is equivalent to FOR RETRY S1; DO S2; 
where RETRY S; is like FIND1 S; except that instead of failing on backtracking, it 
repeatedly regenerates the first solution for S. 

These generally compile into simple loops in Ada. The only complication that arises is 
when a RETURN statement is nested within the FOR/WHILE. In this situation, we wrap 
a subtask around the iteration, and then handle it in a manner similar to that described 
above for conditional branching statements. That is, the statements following the iteration 
are folded into a continuation subtask. The continuation subtask is then called after the 
iteration. The overall structure for a FOR S1; DO S2; that contains an embedded 
return looks as follows: 

task body FOR_task is begin  
    accept start; 
 
    for each solution of S1 loop 
        for each solution of S2 loop 
            null; 
        end loop; 
    end loop; 
 
    for each solution of the continuation-subtask loop 
        success; 
        accept stop; 
        accept start; 
    end loop; 
 
    failure; 
    accept stop; 
end FOR_task;  

It should be noted that any embedded return in S1 or S2 will generate a success exit from 
the FOR task, bypassing the continuation subtask. 

4. Concluding Remarks 

The preceding describes the main techniques used to compile ProTalk constructs into Ada 
using tasks. There are further complications that we have not discussed which result from 
the need to propagate Ada exceptions through the tasks, and to do memory management 
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(garbage collection). These require additional bookkeeping code in the Ada tasks but do 
not otherwise affect the translations. Unfortunately, the additions again have the effect of 
obscuring the underlying structure of the code, though in a different way than in the C-
based translation. (Note that the latter does not need to compile explicit memory 
management instructions into the translation because C provides sufficient facilities to 
build a runtime memory management system.) 

The ProTalk to Ada compiler illustrates the possibilities (and difficulties) of building 
AI applications in Ada. Ada restrictions, such as the lack of functional values, make 
conventional, abstract-machine approaches inappropriate. On the other hand, Ada’s 
tasking mechanism allows an alternative (and, in many ways, clearer) solution that uses 
task-based generators to retain problem-state information. 
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